Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.116
Filtrar
1.
Environ Microbiol Rep ; 16(3): e13262, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38725141

RESUMO

Common carp (Cyprinus carpio) were fed food with different protein concentrations following different feeding regimes, which were previously shown to affect growth, nitrogen excretion and amino acid catabolism. 16S rRNA gene amplicon sequencing was performed to investigate the gut microbiota of these fish. Lower dietary protein content increased microbial richness, while the combination of demand feeding and dietary protein content affected the composition of the gut microbiota. Hepatic glutamate dehydrogenase (GDH) activity was correlated to the composition of the gut microbiota in all dietary treatments. We found that demand-fed carp fed a diet containing 39% protein had a significantly higher abundance of Beijerinckiaceae compared to other dietary groups. Network analysis identified this family and two Rhizobiales families as hubs in the microbial association network. In demand-fed carp, the microbial association network had significantly fewer connections than in batch-fed carp. In contrast to the large effects of the feeding regime and protein content of the food on growth and nitrogen metabolism, it had only limited effects on gut microbiota composition. However, correlations between gut microbiota composition and liver GDH activity showed that host physiology and gut microbiota are connected, which warrants functional studies into the role of the gut microbiota in fish physiology.


Assuntos
Ração Animal , Bactérias , Carpas , Proteínas Alimentares , Microbioma Gastrointestinal , RNA Ribossômico 16S , Animais , Carpas/microbiologia , Carpas/crescimento & desenvolvimento , Ração Animal/análise , RNA Ribossômico 16S/genética , Proteínas Alimentares/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Nitrogênio/metabolismo , Fígado/metabolismo , Filogenia , Dieta/veterinária
2.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38673928

RESUMO

There are two paralogs of glutamate dehydrogenase (GDH) in humans encoded by the GLUD1 and GLUD2 genes as a result of a recent retroposition during the evolution of primates. The two human GDHs possess significantly different regulation by allosteric ligands, which is not fully characterized at the structural level. Recent advances in identification of the GDH ligand binding sites provide a deeper perspective on the significance of the accumulated substitutions within the two GDH paralogs. In this review, we describe the evolution of GLUD1 and GLUD2 after the duplication event in primates using the accumulated sequencing and structural data. A new gibbon GLUD2 sequence questions the indispensability of ancestral R496S and G509A mutations for GLUD2 irresponsiveness to GTP, providing an alternative with potentially similar regulatory features. The data of both GLUD1 and GLUD2 evolution not only confirm substitutions enhancing GLUD2 mitochondrial targeting, but also reveal a conserved mutation in ape GLUD1 mitochondrial targeting sequence that likely reduces its transport to mitochondria. Moreover, the information of GDH interactors, posttranslational modification and subcellular localization are provided for better understanding of the GDH mutations. Medically significant point mutations causing deregulation of GDH are considered from the structural and regulatory point of view.


Assuntos
Evolução Molecular , Glutamato Desidrogenase , Processamento de Proteína Pós-Traducional , Animais , Humanos , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/química , Ligantes , Mutação , Primatas/genética
3.
Nat Commun ; 15(1): 3468, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658571

RESUMO

Metabolism has recently emerged as a major target of genes implicated in the evolutionary expansion of human neocortex. One such gene is the human-specific gene ARHGAP11B. During human neocortex development, ARHGAP11B increases the abundance of basal radial glia, key progenitors for neocortex expansion, by stimulating glutaminolysis (glutamine-to-glutamate-to-alpha-ketoglutarate) in mitochondria. Here we show that the ape-specific protein GLUD2 (glutamate dehydrogenase 2), which also operates in mitochondria and converts glutamate-to-αKG, enhances ARHGAP11B's ability to increase basal radial glia abundance. ARHGAP11B + GLUD2 double-transgenic bRG show increased production of aspartate, a metabolite essential for cell proliferation, from glutamate via alpha-ketoglutarate and the TCA cycle. Hence, during human evolution, a human-specific gene exploited the existence of another gene that emerged during ape evolution, to increase, via concerted changes in metabolism, progenitor abundance and neocortex size.


Assuntos
Proteínas Ativadoras de GTPase , Glutamato Desidrogenase , Neocórtex , Neocórtex/metabolismo , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Neocórtex/citologia , Humanos , Animais , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Ácidos Cetoglutáricos/metabolismo , Neuroglia/metabolismo , Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Camundongos , Ciclo do Ácido Cítrico/genética , Feminino
4.
Discov Med ; 36(183): 836-841, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665031

RESUMO

BACKGROUND: Over 80% of lung cancer cases constitute non-small cell lung cancer (NSCLC), making it the most prevalent type of lung cancer globally and the leading cause of cancer-related deaths. The treatment of NSCLC patients with gefitinib has demonstrated promising initial efficacy. However, the underlying mechanism remains unclear. This study aims to investigate how gefitinib affects the mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinases (ERK) signaling pathway-mediated growth and death of NSCLC cells. METHODS: In this study, the NSCLC cell line A549 was cultured in vitro and divided into a control group and a gefitinib group. The viability of the A549 cells was assessed using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Flow cytometry was employed to detect apoptosis in A549 cells, and the expression of glutamate dehydrogenase (GDH1) mRNA in these cells was determined using real-time quantitative PCR (RT-PCR). Western blotting was utilized to evaluate the protein expression levels of key components in the MEK/ERK signaling pathway, including phospho-MEK1/2, MEK1/2, phospho-ERK1/2, and ERK1/2. Additionally, intracellular glutamine content in A549 cells was measured using a colorimetric method. RESULTS: In contrast to the control group, the proliferation of A549 cells, the transcription level of glutamate dehydrogenase (GDH1), the intracellular glutamine content, and the protein expression levels of phospho-MEK1/2 and phospho-ERK1/2 were significantly lower in the gefitinib group. Moreover, apoptosis markedly increased. CONCLUSIONS: Gefitinib expedites apoptosis and diminishes proliferation in the NSCLC cell line A549 by downregulating the epidermal growth factor receptor (EGFR)/MEK/ERK signaling pathway. This effect is accomplished by fostering the expression of GDH1 to augment glutaminolysis in A549 cells.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Gefitinibe , Glutamina , Neoplasias Pulmonares , Sistema de Sinalização das MAP Quinases , Humanos , Gefitinibe/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Células A549 , Glutamina/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Glutamato Desidrogenase/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral
5.
Microb Biotechnol ; 17(3): e14429, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483038

RESUMO

Glutamate serves as the major cellular amino group donor. In Bacillus subtilis, glutamate is synthesized by the combined action of the glutamine synthetase and the glutamate synthase (GOGAT). The glutamate dehydrogenases are devoted to glutamate degradation in vivo. To keep the cellular glutamate concentration high, the genes and the encoded enzymes involved in glutamate biosynthesis and degradation need to be tightly regulated depending on the available carbon and nitrogen sources. Serendipitously, we found that the inactivation of the ansR and citG genes encoding the repressor of the ansAB genes and the fumarase, respectively, enables the GOGAT-deficient B. subtilis mutant to synthesize glutamate via a non-canonical fumarate-based ammonium assimilation pathway. We also show that the de-repression of the ansAB genes is sufficient to restore aspartate prototrophy of an aspB aspartate transaminase mutant. Moreover, in the presence of arginine, B. subtilis mutants lacking fumarase activity show a growth defect that can be relieved by aspB overexpression, by reducing arginine uptake and by decreasing the metabolic flux through the TCA cycle.


Assuntos
Compostos de Amônio , Fumarato Hidratase/genética , Ácido Glutâmico/metabolismo , Glutamato Desidrogenase/genética , Arginina , Nitrogênio/metabolismo
6.
Open Vet J ; 14(2): 683-691, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38549576

RESUMO

Background: Canine atopic dermatitis (CAD) is caused by skin barrier dysfunction due to allergen exposure. Excessive glutamate release in the skin is associated with delayed skin barrier function recovery and epidermal thickening and lichenification. Treatment with Yokukansan (YKS), a traditional Japanese medicine, reduces dermatitis severity and scratching behavior in NC/Nga mice by decreasing epidermal glutamate levels. However, the association between canine keratinocytes and glutamate and the mechanism by which YKS inhibits glutamate release from keratinocytes remains unknown. Aim: We aimed to investigate glutamate release from canine progenitor epidermal keratinocytes (CPEKs) and the inhibitory effect of YKS on this release. We also explored the underlying mechanism of YKS to enable its application in CAD treatment. Methods: Glutamate produced from CPEKs in the medium at 24 hours was measured. The measurement conditions varied in terms of cell density and YKS concentration. CPEKs were treated with a glutamate receptor antagonist (MK-801), a glutamate transporter antagonist (THA), and a glutamate dehydrogenase inhibitor (epigallocatechin gallate; EGCG), and the inhibitory effect of YKS, YKS + THA, MK-801, and EGCG on this release was determined. MK-801 and glutamate dehydrogenase inhibitor were tested alone, and THA was tested in combination with YKS. Finally, glutamine incorporated into CPEKs at 24 hours was measured using radioisotope labeling. Results: CPEKs released glutamate in a cell density-dependent manner, inhibited by YKS in a concentration-dependent manner. Moreover, YKS reduced the intracellular uptake of radioisotope-labeled glutamine in a concentration-dependent manner. No involvement of glutamate receptor antagonism or activation of glutamate transporters was found, as suggested by previous studies. In addition, EGCG could inhibit glutamate release from CPEKs. Conclusion: Our findings indicated that glutamate release from CPEKs could be effectively inhibited by YKS, suggesting the utility of YKS in maintaining skin barrier function during CAD. In addition, CPEKs are appropriate for analyzing the mechanism of YKS. However, we found that the mechanism of action of YKS differs from that reported in previous studies, suggesting that it may have had a similar effect to EGCG in this study. Further research is warranted to understand the exact mechanism and clinical efficacy in treating CAD.


Assuntos
Medicamentos de Ervas Chinesas , Ácido Glutâmico , Glutamina , Camundongos , Animais , Cães , Ácido Glutâmico/farmacologia , Glutamina/farmacologia , Maleato de Dizocilpina/farmacologia , Glutamato Desidrogenase/farmacologia , Queratinócitos , Radioisótopos/farmacologia
7.
PLoS One ; 19(3): e0300541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483875

RESUMO

Glycerol dehydrogenase (GDH) catalyzes glycerol oxidation to dihydroxyacetone in a NAD+-dependent manner. As an initiator of the oxidative pathway of glycerol metabolism, a variety of functional and structural studies of GDH have been conducted previously. Structural studies revealed intriguing features of GDH, like the flexible ß-hairpin and its significance. Another commonly reported structural feature is the enzyme's octameric oligomerization, though its structural details and functional significance remained unclear. Here, with a newly reported GDH structure, complexed with both NAD+ and glycerol, we analyzed the octamerization of GDH. Structural analyses revealed that octamerization reduces the structural dynamics of the N-domain, which contributes to more consistently maintaining a distance required for catalysis between the cofactor and substrate. This suggests that octamerization may play a key role in increasing the likelihood of the enzyme reaction by maintaining the ligands in an appropriate configuration for catalysis. These findings expand our understanding of the structure of GDH and its relation to the enzyme's activity.


Assuntos
NAD , Desidrogenase do Álcool de Açúcar , NAD/metabolismo , Glicerol/metabolismo , Desidrogenase do Álcool de Açúcar/metabolismo , Oxirredução , Glutamato Desidrogenase/metabolismo
8.
Mol Biol Rep ; 51(1): 403, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457002

RESUMO

BACKGROUND: Giardia duodenalis is an important intestinal parasitic protozoan that infects several vertebrates, including humans. Cattle are considered the major source of giardiasis outbreak in humans. This study aimed to investigate the prevalence and multilocus genotype (MLG) of G. duodenalis in Shanxi, and lay the foundation for the prevention and control of Giardiosis. METHODS AND RESULTS: DNA extraction, nested polymerase chain reaction, sequence analysis, MLG analysis, and statistical analysis were performed using 858 bovine fecal samples from Shanxi based on three gene loci: ß-giardin (bg), glutamate dehydrogenase (gdh), and triosephosphate isomerase (tpi). The overall prevalence of G. duodenalis was 28.3%, while its prevalence in Yingxian and Lingqiu was 28.1% and 28.5%, respectively. The overall prevalence of G. duodenalis in dairy cattle and beef cattle was 28.0% and 28.5%, respectively. G. duodenalis infection was detected in all age groups evaluated in this study. The overall prevalence of G. duodenalis in diarrhea and nondiarrhea samples was 32.4% and 27.5%, respectively, whereas that in intensively farmed and free-range cattle was 35.0% and 19.9%, respectively. We obtained 83, 53, and 59 sequences of bg, gdh, and tpi in G. duodenalis, respectively. Moreover, assemblage A (n = 2) and assemblage E (n = 81) by bg, assemblage A (n = 1) and assemblage E (n = 52) by gdh, and assemblage A (n = 2) and assemblage E (n = 57) by tpi were identified. Multilocus genotyping yielded 29 assemblage E MLGs, which formed 10 subgroups. CONCLUSIONS: To the best of our knowledge, this is the first study to report cattle infected with G. duodenalis in Shanxi, China. Livestock-specific G. duodenalis assemblage E was the dominant assemblage genotype, and zoonotic sub-assemblage AI was also detected in this region.


Assuntos
Giardia lamblia , Giardíase , Humanos , Bovinos , Animais , Giardia lamblia/genética , Tipagem de Sequências Multilocus , Proteínas de Protozoários/genética , Giardíase/epidemiologia , Giardíase/veterinária , Giardíase/parasitologia , Genótipo , China/epidemiologia , Prevalência , Fezes/parasitologia , Triose-Fosfato Isomerase/genética , Glutamato Desidrogenase/genética , Filogenia
9.
J Microbiol Biotechnol ; 34(4): 978-984, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38379308

RESUMO

Genome-scale metabolic model (GEM) can be used to simulate cellular metabolic phenotypes under various environmental or genetic conditions. This study utilized the GEM to observe the internal metabolic fluxes of recombinant Escherichia coli producing gamma-aminobutyric acid (GABA). Recombinant E. coli was cultivated in a fermenter under three conditions: pH 7, pH 5, and additional succinic acids. External fluxes were calculated from cultivation results, and internal fluxes were calculated through flux optimization. Based on the internal flux analysis, glycolysis and pentose phosphate pathways were repressed under cultivation at pH 5, even though glutamate dehydrogenase increased GABA production. Notably, this repression was halted by adding succinic acid. Furthermore, proper sucA repression is a promising target for developing strains more capable of producing GABA.


Assuntos
Escherichia coli , Ácido gama-Aminobutírico , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/biossíntese , Concentração de Íons de Hidrogênio , Fermentação , Glicólise , Ácido Succínico/metabolismo , Via de Pentose Fosfato , Análise do Fluxo Metabólico , Modelos Biológicos , Reatores Biológicos/microbiologia , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Engenharia Metabólica/métodos
10.
Cancer Res ; 84(10): 1643-1658, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417136

RESUMO

Hepatocellular carcinoma (HCC) is a typical tumor that undergoes metabolic reprogramming, differing from normal liver tissue in glucose, lipid, nucleic acid, and amino acid metabolism. Although ammonia is a toxic metabolic by-product, it has also been recently recognized as a signaling molecule to activate lipid metabolism, and it can be a nitrogen source for biosynthesis to support tumorigenesis. In this study, we revealed that ß-catenin activation increases ammonia production in HCC mainly by stimulating glutaminolysis. ß-Catenin/LEF1 activated the transcription of the glutamate dehydrogenase GLUD1, which then promoted ammonia utilization to enhance the production of glutamate, aspartate, and proline as evidenced by 15NH4Cl metabolic flux. ß-Catenin/TCF4 induced the transcription of SLC4A11, an ammonia transporter, to excrete excess ammonia. SLC4A11 was upregulated in HCC tumor tissues, and high SLC4A11 expression was associated with poor prognosis and advanced disease stages. Loss of SLC4A11 induced HCC cell senescence in vitro by blocking ammonia excretion and reduced ß-catenin-driven tumor growth in vivo. Furthermore, elevated levels of plasma ammonia promoted the progression of ß-catenin mutant HCC, which was impeded by SLC4A11 deficiency. Downregulation of SLC4A11 led to ammonia accumulation in tumor interstitial fluid and decreased plasma ammonia levels in HCC with activated ß-catenin. Altogether, this study indicates that ß-catenin activation reprograms ammonia metabolism and that blocking ammonia excretion by targeting SLC4A11 could be a promising approach to induce senescence in ß-catenin mutant HCC. SIGNIFICANCE: Ammonia metabolism reprogramming mediated by aberrant activation of ß-catenin induces resistance to senescence in HCC and can be targeted by inhibiting SLC4A11 as a potential therapy for ß-catenin mutant liver cancer.


Assuntos
Amônia , Carcinoma Hepatocelular , Senescência Celular , Neoplasias Hepáticas , beta Catenina , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Amônia/metabolismo , beta Catenina/metabolismo , Animais , Camundongos , Masculino , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Camundongos Nus , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Prognóstico , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética
11.
Microb Pathog ; 188: 106565, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309311

RESUMO

Streptococcus suis serotype 2 is a zoonotic agent that causes substantial economic losses to the swine industry and threatens human public health. Factors that contribute to its ability to cause disease are not yet fully understood. Glutamate dehydrogenase (GDH) is an enzyme found in living cells and plays vital roles in cellular metabolism. It has also been shown to affect pathogenic potential of certain bacteria. In this study, we constructed a S. suis serotype 2 GDH mutant (Δgdh) by insertional inactivation mediated by a homologous recombination event and confirmed loss of expression of GDH in the mutant by immunoblot and enzyme activity staining assays. Compared with the wild type (WT) strain, Δgdh displayed a different phenotype. It exhibited impaired growth in all conditions evaluated (solid and broth media, increased temperature, varying pH, and salinity) and formed cells of reduced size. Using a swine infection model, pigs inoculated with the WT strain exhibited fever, specific signs of disease, and lesions, and the strain could be re-isolated from the brain, lung, joint fluid, and blood samples collected from the infected pigs. Pigs inoculated with the Δgdh strain did not exhibit any clinical signs of disease nor histologic lesions, and the strain could not be re-isolated from any of the tissues nor body fluid sampled. The Δgdh also showed a decreased level of survival in pig blood. Taken together, these results suggest that the gdh is important in S. suis physiology and its ability to colonize, disseminate, and cause disease.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Suínos , Animais , Humanos , Virulência , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Streptococcus suis/genética , Sorogrupo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Doenças dos Suínos/microbiologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia
12.
Aquat Toxicol ; 268: 106840, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278063

RESUMO

Possible ammonium detoxification mechanisms have been proposed recently, on submerged macrophytes, evidently illustrating that glutamate dehydrogenase (GDH) plays a greater role in ammonium detoxification compared to the primary glutamine synthetase/glutamate oxaloacetate transaminase (GS/GOGAT) pathway. In the current investigation, we cultured three submerged macrophytes to extreme concentrations of [NH4+-N] of up to 50 mg/L with the aim of clarifying the interaction between carbon and nitrogen metabolisms. The activities of carboxylation enzymes pyruvate orthophosphate dikinase (PPDK) and phosphoenolpyruvate carboxylase (PEPC), in lieu of Rubisco, increased almost two-fold for ammonium tolerant species P. maackianus and M. spicatum, compared with the sensitive species P. lucens. While these enzymes are well known for their central role in CO2 fixation, their inference in conferring resistance to ammonium stress has not been well elucidated before. In this study, we demonstrate that the overproduction of PEPC and PPDK led to improved photosynthesis, better ammonium assimilation and overall ammonium detoxification in M. spicatum and P. maackianus. These findings propose likelihood for the existence of a complementary ammonium detoxification pathway that targets carbon metabolism, thus, presenting a relatively efficient linkage between nitrogen and carbon metabolisms and identify candidate species for practical restoration of fresh water resources.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Carbono/metabolismo , Poluentes Químicos da Água/toxicidade , Glutamato Desidrogenase/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo
13.
Eur J Med Res ; 29(1): 70, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245763

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is a common primary tumor of the kidney and is divided into three major subtypes, of which clear cell renal cell carcinoma (ccRCC) has the highest incidence. Glutamate dehydrogenase 1 (GLUD1) encodes glutamate dehydrogenase 1, which catalyzes the oxidative deamination of glutamate. METHODS: We analyzed TCGA data using R language software and used multiple online databases to explore the relationship of GLUD1 with signaling pathways and drug sensitivity as well as GLUD1 protein expression and methylation. RESULTS: The results showed that GLUD1 mRNA expression was reduced in tumor tissues and correlated with the progression of ccRCC. Univariate and multivariate Cox analysis showed that GLUD1 could be used as a prognostic marker for ccRCC. GLUD1 expression in ccRCC was associated with immune cells infiltration and multiple classical signaling pathways. In addition, GLUD1 mRNA expression was related to drug sensitivity. CONCLUSIONS: These findings provide new ideas for finding new prognostic molecular markers and therapeutic targets for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Prognóstico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Glutamato Desidrogenase , Biologia Computacional , RNA Mensageiro/metabolismo
14.
Mol Biotechnol ; 66(2): 241-253, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37079266

RESUMO

Circular RNA dipeptidyl peptidase 4 (circDPP4) has been confirmed as a novel oncogene in prostate cancer (PCa). In this study, we aimed to explore the underlying mechanism of circDPP4 in PCa progression. Levels of circDPP4, microRNA (miR)-497-5p, glutamate dehydrogenase 1 (GLUD1), proliferating cell nuclear antigen (PCNA), BCL2 associated X, apoptosis regulator (Bax), E-cadherin and Ki67 were gauged by a quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, or immunohistochemical method. We assessed the roles of variables in PCa cell phenotypes by measuring cell growth, apoptosis, motility and invasiveness. We performed RNA immunoprecipitation (RIP) and dual-luciferase reporter assays to confirm the interactions of circDPP4/miR-497-5p and miR-497-5p/GLUD1. A xenograft model was established to gauge the effect of circDPP4 in the tumorigenicity of PCa cells. PCa tumor tissues and cell lines revealed higher levels of circDPP4 and GLUD1 and a lower expression of miR-497-5p than controls. CircDPP4 silencing hindered the growth, motility and invasiveness of PCa cells. Conversely, silencing circDPP4 enhanced PCa cell apoptosis. Mechanistic analysis showed that circDPP4 functioned as a miR-497-5p sponge to reduce the suppressive action of miR-497-5p on GLUD1, which was validated as a direct miR-497-5p target. Furthermore, circDPP4 knockdown weakened the tumorigenicity of PCa cells. CircDPP4 facilitated PCa process by mediating the miR-497-5p/GLUD1 axis, providing a possible therapy target for PCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , RNA Circular/genética , Dipeptidil Peptidase 4 , Glutamato Desidrogenase , Neoplasias da Próstata/genética , MicroRNAs/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
15.
Cell Biochem Biophys ; 82(1): 223-233, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38040891

RESUMO

The N-terminus of Histone H3 is proteolytically processed in aged chicken liver. A histone H3 N-terminus specific endopeptidase (named H3ase) has been purified from the nuclear extract of aged chicken liver. By sequencing and a series of biochemical methods including the demonstration of H3ase activity in bacterially expressed GDH, it was established that the H3ase activity was a moonlighting protease activity of glutamate dehydrogenase (GDH). However, the active site for the H3ase in the GDH remains elusive. Here, using cross-linking studies of the homogenously purified H3ase, we show that the GDH and the H3ase remain in the same native state. Further, the H3ase and GDH activities could be uncoupled by partial denaturation of GDH, suggesting strong evidence for the involvement of different active sites for GDH and H3ase activities. Through densitometry of the H3ase clipped H3 products, the H3ase activity was quantified and it was compared with the GDH activity of the chicken liver nuclear GDH. Furthermore, the H3ase mostly remained distributed in the perinuclear area as demonstrated by MNase digestion and immuno-localization of H3ase in chicken liver nuclei, as well as cultured mouse hepatocyte cells, suggesting that H3ase demonstrated regulated access to the chromatin. The present study thus broadly compares the H3ase and GDH activities of the chicken liver GDH.


Assuntos
Histonas , Peptídeo Hidrolases , Camundongos , Animais , Glutamato Desidrogenase/metabolismo , Endopeptidases/metabolismo , Núcleo Celular/metabolismo
16.
Science ; 382(6677): 1389-1394, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38060673

RESUMO

Fast synaptic neurotransmission in the vertebrate central nervous system relies primarily on ionotropic glutamate receptors (iGluRs), which drive neuronal excitation, and type A γ-aminobutyric acid receptors (GABAARs), which are responsible for neuronal inhibition. However, the GluD1 receptor, an iGluR family member, is present at both excitatory and inhibitory synapses. Whether and how GluD1 activation may affect inhibitory neurotransmission is unknown. In this work, by using a combination of biochemical, structural, and functional analyses, we demonstrate that GluD1 binds GABA, a previously unknown feature of iGluRs. GluD1 activation produces long-lasting enhancement of GABAergic synaptic currents in the adult mouse hippocampus through a non-ionotropic mechanism that is dependent on trans-synaptic anchoring. The identification of GluD1 as a GABA receptor that controls inhibitory synaptic plasticity challenges the classical dichotomy between glutamatergic and GABAergic receptors.


Assuntos
Inibição Neural , Plasticidade Neuronal , Receptores de GABA , Transmissão Sináptica , Ácido gama-Aminobutírico , Animais , Camundongos , Ácido gama-Aminobutírico/metabolismo , Glutamato Desidrogenase/metabolismo , Hipocampo/metabolismo , Receptores de GABA/metabolismo , Sinapses/fisiologia , Camundongos Knockout , Racemases e Epimerases/genética
17.
Biosensors (Basel) ; 13(12)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38131783

RESUMO

Glutamate, a non-essential amino acid produced by fermentation, plays a significant role in disease diagnosis and food safety. It is important to enable the real-time monitoring of glutamate concentration for human health and nutrition. Due to the challenges in directly performing electrochemical oxidation-reduction reactions of glutamate, this study leverages the synergistic effect of glutamate dehydrogenase (GLDH) and nanoporous gold (NPG) to achieve the indirect and accurate detection of glutamate within the range of 50 to 700 µM by measuring the generated quantity of NADH during the enzymatic reaction. The proposed biosensor demonstrates remarkable performance characteristics, including a detection sensitivity of 1.95 µA mM-1 and a limit of detection (LOD) of 6.82 µM. The anti-interference tests indicate an average recognition error ranging from -3.85% to +2.60%, spiked sample recovery rates between 95% and 105%, and a relative standard deviation (RSD) of less than 4.97% for three replicate experiments. Therefore, the GLDH-NPG/GCE biosensor presented in this work exhibits excellent accuracy and repeatability, providing a novel alternative for rapid glutamate detection. This research contributes significantly to enhancing the precise monitoring of glutamate concentration, thereby offering more effective guidance and control for human health and nutrition.


Assuntos
Técnicas Biossensoriais , Nanoporos , Técnicas Eletroquímicas , Eletrodos , Glutamato Desidrogenase/metabolismo , Ácido Glutâmico , Ouro/química
18.
Physiol Plant ; 175(6): e14071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148220

RESUMO

In plants, glutamate dehydrogenase (GDH) is an ubiquitous enzyme that catalyzes the reversible amination of 2-oxoglutarate in glutamate. It contributes to both the amino acid homeostasis and the management of intracellular ammonium, and it is regarded as a key player at the junction of carbon and nitrogen assimilation pathways. To date, information about the GDH of terrestrial plants refers to a very few species only. We focused on selected species belonging to the division Marchantiophyta, providing the first panoramic overview of biochemical and functional features of GDH in liverworts. Native electrophoretic analyses showed an isoenzymatic profile less complex than what was reported for Arabidposis thaliana and other angiosperms: the presence of a single isoform corresponding to an α-homohexamer, differently prone to thermal inactivation on a species- and organ-basis, was found. Sequence analysis conducted on amino acid sequences confirmed a high similarity of GDH in modern liverworts with the GDH2 protein of A. thaliana, strengthening the hypothesis that the duplication event that gave origin to GDH1-homolog gene from GDH2 occurred after the evolutionary bifurcation that separated bryophytes and tracheophytes. Experiments conducted on Marchantia polymorpha and Calypogeia fissa grown in vitro and compared to A. thaliana demonstrated through in gel activity detection and monodimensional Western Blot that the aminating activity of GDH resulted in strongly enhanced responses to ammonium excess in liverworts as well, even if at a different extent compared to Arabidopsis and other vascular species. The comparative analysis by bi-dimensional Western Blot suggested that the regulation of the enzyme could be, at least partially, untied from the protein post-translational pattern. Finally, immuno-electron microscopy revealed that the GDH enzyme localizes at the subcellular level in both mitochondria and chloroplasts of parenchyma and is specifically associated to the endomembrane system in liverworts.


Assuntos
Compostos de Amônio , Arabidopsis , Hepatófitas , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/química , Glutamato Desidrogenase/metabolismo , Arabidopsis/metabolismo , Sequência de Aminoácidos , Hepatófitas/genética , Hepatófitas/metabolismo , Compostos de Amônio/metabolismo
19.
J Infect Dev Ctries ; 17(10): 1452-1457, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37956379

RESUMO

INTRODUCTION: Clostridium difficile is the most common cause of antibiotic-associated diarrhea and colitis. Several methods are available for the detection of C. difficile in stool samples. This study aimed to use glutamate dehydrogenase (GDH), toxin detection, culture and polymerase chain reaction (PCR) techniques for the diagnosis of this pathogen. METHODOLOGY: A total of 300 stool samples were collected from children with hospital acquired diarrhea (HA-D), community acquired diarrhea (CA-D), and hospitalized non-diarrheic children as control with ages ranging from 6 months to 6 years (mean 3.7 ± 1.7). Each stool sample was divided into two parts; one part was tested for the enzyme GDH, toxin A and B and then cultured on selective media; and the other part for direct DNA extraction. RESULTS: From a total of 300 stool samples, 9 (3.0%) were positive for C. difficile by the PCR technique, 7 (7%) samples of which were from HA-D cases and 2 (2.0%) from CA-D cases; the control group samples were negative. The enzyme GDH was detected in 12 (12%) samples and toxins A and B in 8 (8%) samples from HA-D cases compared to 5 (5%) and 2 (2%), respectively from CA-D cases. Both GDH and the toxins were negative in control samples. Only 19 (19.0%) samples from HA-D cases gave suspected growth and all of these were negative by PCR. CONCLUSIONS: Based on the results of this study, we conclude that the PCR technique is the only reliable method for the diagnosis of this pathogen.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Enterocolite Pseudomembranosa , Humanos , Criança , Clostridioides difficile/genética , Toxinas Bacterianas/genética , Proteínas de Bactérias/genética , Fezes , Reação em Cadeia da Polimerase , Glutamato Desidrogenase/análise , Glutamato Desidrogenase/genética , Diarreia/diagnóstico , Infecções por Clostridium/diagnóstico , Enterotoxinas/análise , Sensibilidade e Especificidade
20.
Structure ; 31(11): 1294-1296, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37922866

RESUMO

Substrate specificity is central to the regulation of cellular ubiquitylation. In this issue of Structure, Teng et al. employ biochemistry and cryo-EM single-particle reconstruction to clarify the intricate interaction of the dimeric CRL3KLHL22 E3 ligase assembly with a hexameric substrate and its possible implications for metabolic adaptation and oncogenesis.


Assuntos
Proteínas Culina , Glutamato Desidrogenase , Proteínas Culina/metabolismo , Glutamato Desidrogenase/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...